
Soĕware Development (2500)
Lecture 10: Reference Variables

M.R.C. van Dongen

October 18, 2010

Contents
1 Objectives 1

2 ăe ObjectClass 2
2.1 Object Comparison . 2
2.2 ăe ObjectClass . 3

3 TypesMatter 3

4 Sharing Object References 4

5 Object Lifecycle 5

6 Arrays 6
6.1 Array Subscripts . 6
6.2 Primitive Type Arrays . 7
6.3 Object Type Arrays . 7
6.4 Arrays do Not Grow . 8

7 Life 8

8 For Friday 10

1 Objectives
ăe start of these notes is not in the book. ăe rest corresponds to Chapter 3. ăe main objectives are
as follows.

• Study general properties of objects: the Object class.

1

• Revisit the importance of types in Java.

• Study the notion of alias reference variables.

• Explore Java’s garbage collection mechanism.

• Study properties of objects in general and arrays in particular.

• Carry out a partial case study: Conway’s Game of Life.

2 ăe ObjectClass
ăis section studies some object-related issues. It starts with a discussion about object comparison. It
continues with a presention of some common methods that are deđned in the Object class.

2.1 Object Comparison
Comparingobject referencesworks like as comparingprimitive types. ⟨reference⟩1 == ⟨reference⟩2
if and only if ⟨reference⟩1 and ⟨reference⟩2 have the same value. “Having the same value” now
means referring to the same object. ⟨reference⟩1 != ⟨reference⟩2 if and only if ! (⟨reference⟩1
== ⟨reference⟩2).

ăe following is an example.

Dog barney = null;

Dog fido = new Dog();

if (barney != fido) {

System.out.println(”This makes sense.”);

}

barney = fido;

if (barney == fido) {

System.out.println(”This also makes sense.”);

}

Java

If it looks like a sheep, walks like a sheep, and bleats like a sheep, then it probably is a sheep. ăis is a
reasonable assumption: what matters is the behaviour. In general, two things may be equal “modulo” an
equivalence class. For example, 2 and 4 are both even. ăey are indistinguishable if we can only compare
their evenness.

If ⟨sheep⟩1 == ⟨sheep⟩2 then ⟨sheep⟩1 and ⟨sheep⟩2 deĖnitely behave the same. However, there
maybedifferent objects that behave the same. For example, Sheep clones. ăis iswhyobject comparison
with ‘==’ is called shallow comparison. If ⟨object⟩1 == ⟨object⟩2 then ⟨object⟩1 and ⟨object⟩2
are said to be shallowly equal.

Two shallowly equal object references are deeply equal. Two shallowly different object references are
also deeply equal if their attribute values are deeply equal.

2

2.2 ăe ObjectClass
Objects are đrst-class citizens in Java, so it should not come as a surprise that there is a special Object
class, which all other classes are a subclass of. As you may recall from Lecture 6 subclasses inherit all
attributes and methods from their superclass. Except for the Object class, any class therefore inherits
any (public) attributes and methods which are deđned in the Object class. As it turns out, the Object
class does not deđne attributes but it does provide methods. ăe following are some of these methods.

boolean equals(Object that): Indicates whether some other object is “deeply” equal to this

one.

int hashCode(): Returns the hash code value of this object. Here the hash code of an object is an
int value which may be used to “partially” recognise the objects. If two objects are deeply equal,
their hash codes should be equal.

String toString(): Returns a string representation of the object.

For themoment toString is arguably one of themore importantmethods as it is usedwhen themethod
is printed. ăe method gets called automatically when the object is printed.

Dog dog = new Dog();

// Same as System.out.println(dog.toString());

System.out.println(dog);

Java

For the moment you may forget about the other methods.

3 TypesMatter
In the followingwe shall assume the existence of a Dog and a Giraffe class. We’ve already seen that Java
cares about its typeswhen it came to primitive types. Java also cares about object reference types. When
dealing with object reference variables, it is generally only allowed to assign like to like. So assigning
Dog object references to Dog object reference variables is allowed. Likewise, assigning Giraffe object
references to Giraffe object reference variables is also allowed. However, (in general) it is not possible
to assign a Giraffe object reference to a Dog object reference variable. You can only assign an ⟨class⟩1
object reference to a ⟨class⟩2 object reference variable if ⟨class⟩1 is a subclass of (a more speciđc class
than) ⟨class⟩2. ăe following is a valid Java program. Figure 1 depicts the resulting situation on the
heap.

Dog barney = new Dog();

Dog zeus = new Dog();

Giraffe giraffe = new Giraffe();

Java

ăe following, in general is not allowed. Figure 2 depicts this impossible situation: Giraffe objects
don’t bark().

3

off call on

1 2 3
4 5 6
7 8 9
0

barney

off call on

1 2 3
4 5 6
7 8 9
0

zeus

off call on

1 2 3
4 5 6
7 8 9
0

giraffe Dog object Dog object Giraffe object

Figure 1: Object reference variable values and objects on the heap aĕer creating two Dog objects and one
Giraffe object.

Dog barney = new Giraffe(); // Impossible

barney.bark(); // ???

Don’t Try this at Home

off call on

1 2 3
4 5 6
7 8 9
0

barney Giraffe object

bark()

Bark?

Figure 2: Attempt to assign Giraffe object reference to Dog object reference variable.

4 Sharing Object References
We’ve already seen that it’s allowed to assign object reference values to object reference variables. How-
ever, in all examples the (object reference) values have been createdwith new. With variables of primitive

4

types we can assign the value of one variable to that of another. ăe following program demonstrates
that this is also allowed with object reference variables. In the example, the last assignment assigns bar-
ney’s value to the variable alias. As is the case with primitive type variables, the net effect of such an
assignment is as follows.

• ăe assignment does not involve the creation of new objects; and

• Aĕer the assignment the values of the variables are the same. If the variable on the right hand side
of the assignment refers to an object before the assignment, then both variables will refer to that object
aĕer the assignment.

Using our  remote control analogy, the assignment lets barney and alias control the same . In
computer science two object reference values that refer to the same object are called aliases. Figure 3
depicts the example’s heap conđguration.

Dog barney = new Dog();

Dog zeus = new Dog();

Dog alias = barney;

alias.bark(); // Makes barney’s reference bark too.

Java

off call on

1 2 3
4 5 6
7 8 9
0

barney

off call on

1 2 3
4 5 6
7 8 9
0

zeus

off call on

1 2 3
4 5 6
7 8 9
0

alias Dog object Dog object

bark();
Bark!

Figure 3: Object reference value sharing. ăe Dog references barney and alias share the reference to
the Dog object to the leĕ.

5 Object Lifecycle
Life on the Java heap is a struggle. Due to the huge demand for object allocation space, the  (Java
Virtual Machine) is on the constant lookout for garbage collectible (also known as dead) objects, i.e. ob-
jects which are no longer referenced by any object reference variable. Any garbage collectible object may
be garbage collected at any time by the . Garbage collection is an object’s worst nightmare: when this
happens to an object it ceases to exist.

ăe following J code snippet may help you understand the object lifecycle a bit better.

5

Dog nosey = new Dog();

Dog pity = new Dog();

Dog puppy = new Dog();

pity = nosey;

nosey = puppy;

pity = nosey;

nosey = pity = puppy = null;

Java

• Aĕer the fourth assignment statement pity and nosey have become aliases, but the object which
was previously referenced by pity is no longer referenced. It is lost forever and cannot be recov-
ered by the program anymore. Since there are nomore references to the object, the  is allowed
to garbage collect it at any time.

• Aĕer the đĕh assignment, nosey and puppy have become aliases but pity and nosey are no
longer aliases. No additional object has become garbage collectible as a result of this assignment.

• Aĕer the second last assignment all object reference variables refer to the same object. ăey have
all become aliases of each other and their value is the original value of puppy. As a result of this
assignment the object which was originally referred to by nosey has become garbage collectible.

• Aĕer the last assignment all our Dog objects have become garbage collectible. ăey can be sent to
doggy heaven at any time.

6 Arrays
Arrays are objects too. ăis section is a short introduction to arrays.

6.1 Array Subscripts
Arrays in Java are different from php arrays. In Java:

• An array is a sequence of ℓ things, where ℓ is the length of the array. You get the length of the
array using the instance attribute length. So writing ⟨array⟩.length gives you the length of
⟨array⟩.

• You can look up the ith thing in the array, where i is an integer such that 0 ≤ i < ℓ.

• You write ⟨array⟩[i] to get the thing at position i in the array ⟨array⟩. If i is negative or
greater than or equal to ⟨array⟩.length you get a run-time error.

• You may use ⟨array⟩[i] just like you use any variable. ăe best thing is to regard ⟨array⟩[i
] as the variable that stores the value of the ith thing in ⟨array⟩.

ăe following is an example. In the example, it is assumed that nums is an array that stores int
values.

6

for (int index = 0; index != nums.length; index ++) {

nums[index] = index * index;

}

for (int index = 0; index != nums.length; index ++) {

String str = ”nums[” + index + ”] = ” + nums[index];

System.out.println(str);

}

Java

6.2 Primitive Type Arrays
When an array of primitive type elements is created, all its members are initialised to a default value. For
boolean the default value is false, for char it is ’\u0000’, and for all other types it is 0. ăe spell
‘new ⟨type⟩[⟨size ⟩]’ creates an array with ⟨size⟩members. ăe type of the members in the array
is ⟨type⟩.

ăe following is an example. Figure 4 depicts the state of the array object at the end of this example.

byte[] nums = new byte[5];

nums[1] = 4;

nums[4] = 17;

Java

off call on

1 2 3
4 5 6
7 8 9
0

nums byte[] object

00
00
00
00

byte

00
00
01
00

byte

00
00
00
00

byte

00
00
00
00

byte

00
01
00
01

byte

Figure 4: A primitive array object on the heap. ăe array object reference variable nums refers to the
array. ăe members of the array are all ints.

6.3 Object Type Arrays
When an array of object type elements is created, all its members are also initialised to a default value.
Here the default value is null, which is a special value, which can be assigned to any object reference
variable. However, the value null does not correspond to any object. ăis explains why you are not
allowed to use a null-valued object reference variable’s attributes and methods. Any such attempt will
lead to a run-time error. For example, if the value of the Dog object reference variable dog is null, then
writing ‘dog.bark()’ is not allowed.

7

Dog[] dogs = new Dog[3];

dogs[1] = new Dog();

dogs[1].bark();

dogs[0].bark(); // Run-time error!

Java

6.4 Arrays do Not Grow
ăe length attribute of a Java array is final, i.e. its value remains the same for the entire lifetime of the
array. ăe only things that may change are the values of the things in the array. Since the size of arrays
doesn’t change, it should not come as a surprise that it is not allowed to assign values to ⟨array⟩.length:
length is a final attribute.

ăe maximum size of any array is 0. ăe maximum size of any array is given by the constant Inte-
ger.MAX_VALUE, which is the largest possible value of an int.

7 Life
ăis section is a case study in programming with arrays. ăe subject is a game which was developed by
the British mathematician Arthur Conway as early as 1970see e.g. http://en.wikipedia.org/wiki/
Conway’s_Game_of_Life.

ăe rules of the n × n version of the game are surprisingly simple.

• Life is played on an n × n grid. A square on the grid is called a cell. A cell is either dead or alive.

• ăe game starts with an initial conđguration of cells. ăe conđguration can be either random or
given.

• ăe initial conđguration is called the initial generation g0.

• ăe game continues by computing the generations g1, g2, and so on.

• Generation gi+1 is completely determined by generation gi. ăis is done as follows.

Underpopulation: A live cell with fewer than two live neighbours dies;

Overcrowding: A live cell with more than three live neighbours dies;

Reproduction: Dead cells with three live neighbours become live; and

Invariance: All other cells remain the same.

ăese rules are applied simultaneously to all cells of the grid, so the liveness of the cells in the next
generation is completely determined by the liveness of the previous generation.

ăe remainder of the notes are a partial implementation. You will complete this implementation as
Assignment 3.

ăe following is an outline of the class. ăe private attribute cells represents the cells of the game.
A cell is alive if and only if its cell is true.

8

public class Life {

private final boolean[][] cells;

public static void main(String[] args) {

Life generation = new Life(70);

for (int i = 0; i != 10000; i++) {

System.out.println(generation);

generation.next();

}

}

// Constructors

// Public methods and helper methods.

}

Java

ăe notation ‘boolean[][]’ means ‘array of array of boolean’: a 2-dimensional array.
We shall implement two constructors. ăe đrst constructor is the default constructor. It creates a

Life object by conđguring it as a “Glider” pattern on a 6 × 6 grid. ăe remaining constructor takes a
size of the grid and generates a random Life object of that size.

ăe following is the default constructor.

// Initialises 6 * 6 grid with Glider pattern.

public Life() {

final int SIZE = 6;

// Arguably, this should have been a class (static) array.

final int[][] pairs = {{2,4},{3,3},{1,2},{2,2},{3,2}};

cells = new boolean[SIZE][];

for (int row = 0; row < SIZE; row ++) {

cells[row] = new boolean[SIZE];

}

for (int pair = 0; pair < pairs.length; pair ++) {

final int row = pairs[pair][0];

final int col = pairs[pair][1];

cells[row][col] = true;

}

}

Java

ăe main task of the constructor is to construct the array cells and initialise the values in the ar-
ray. Since cells is a two-dimensional array of boolean the things at the top level are one-dimensional
boolean arrays. For example, writing ‘cells[index]’ corresponds to an array of boolean. ăe đrst
thing the constructor does is create an array of array of boolean: new boolean[size][]. ăis
makes sure that cells can hold size arrays of boolean. Next it continues by creating each of the size

9

boolean arrays and assign them to the cells in the top-level array: cells[row] = new boolean[

SIZE]. Finally, each cell is initialised. ăis is done in the last for loop.
ăe following is the random constructor. ăe following implementation forces about half of the

cells to be live. To see how this works, notice that that rand.nextInt(2) returns 0 or 1, each with
equal probability. ăerefore the condition ‘(rand.nextInt(2) == 0)Ʋ is true about half of the
times.

// Initialise size * size grid with random cells.

public Life(int size) {

final Random rand = new Random();

cells = new boolean[size][];

for (int row = 0; row < size; row ++) {

cells[row] = new boolean[size];

for (int col = 0; col < size; col ++) {

cells[row][col] = (rand.nextInt(2) == 0);

}

}

}

Java

Remember that the method toString() returns a printable representation of the object. ăe
default implementation of the method is provided by the class Object. ăis implementation is not very
useful. ăe nice thing about Java is that you can provide a more speciđc implementation for instances
of the current class by overriding the method.

ăe following demonstrates how this is done. You start by writing the magic spell @Override and
continue by writing the more speciđc deđnition of toString().

@Override

public String toString() {

String result = ””;

for (int row = 0; row < cells.length; row ++) {

final boolean[] column = cells[row];

for (int col = 0; col < column.length; col ++) {

result = result + (column[col] ? ”x” : ”.”);

}

result = result + ”\n”;

}

return result;

}

Java

8 For Friday
Study the notes and study Chapter 3.

Ʋăe parentheses are added for clarity: they are not needed.

10

